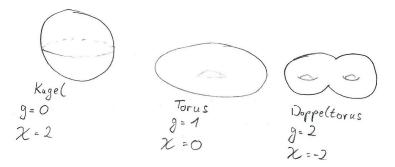
Geschlecht einer glatten Kurve



Satz:

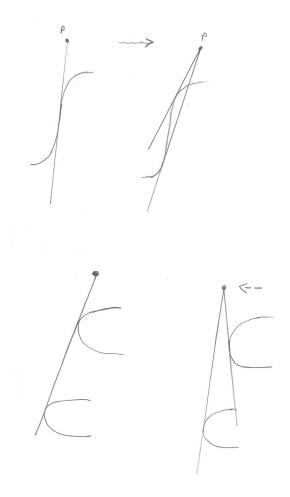
$$C\subset \mathbb{P}^2$$
glatte Kurve von Grad $d\Rightarrow g(C)=\frac{(d-1)(d-2)}{2}$

Definition: C glatte Kurve $\subset \mathbb{P}^2$. Ein Punkt $p \in \mathbb{P}^2$ heißt <u>allgemein</u> ("generisch"), wenn durch \mathbb{P} genau d(d-1) verschiedene Tangenten an C gezogen werden können. Erinnere: $\nabla_p C$ polare von C bez. \mathbb{P} $p' \in C \cap \nabla_p C \Leftrightarrow T_{p'} \ni \mathbb{P}$

$$p' \in C \cap \nabla_p C \Leftrightarrow T_{n'} \ni \mathbb{P}$$

Bemerkung:

- 1) Wir werden später sehen, dass "die meisten" Punkte allgemein bez
.C sind
- 2) Wir werden Begriffe später für singuläre Kurven brauchen
- 3) P allgemein bedeutet, gewisse Unfälle passieren nicht



Zu Beispiel 1 :

$$I(C, T_{p}C, p') = 3 \text{ und } I(\nabla_{p}C, p') = 2$$

Zu Beispiel 2 erkennt man, dass durch Verschiebung 2 Tangenten entstehen.

Beweis von Satz von Riemann-Clebsch

Nehme einen Punkt $p\in\mathbb{P}^2$ allgemein bezC

$$\pi: \mathbb{P}^2 \setminus P \longrightarrow C \qquad p \notin C \subset \mathbb{P}^2 \text{ Gerade}$$

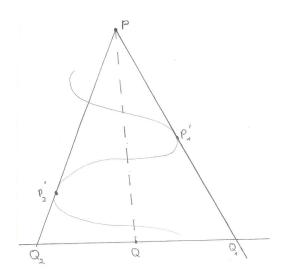
$$P' \longrightarrow \mathbb{Q} = |\mathbb{PP}'| \cap C$$

$$\exists \mathbb{P}'_1, \dots, \mathbb{P}'_N \qquad N = d(d-1)$$

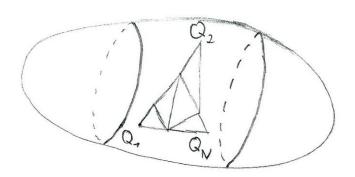
$$|PP'_i| = T_{\mathbb{P}'_i}C$$

$$Q_i = \pi(\mathbb{P}'_i) \in C \approx \mathbb{P}^1 \approx S^2$$

Wir haben $\pi^{-1}(Q)$ besteht aus genau d=Grad(C) verschiedenen Punkten, wenn $Q \notin \{Q_1,\ldots,Q_N\}$



 $\pi^{-1}(Q)$ besteht aus d-1 verschiedenen Punkten. Wir nehmen die Triangulierung von $S^2\approx C$, welche die Punkte Q_i $i=1,\ldots,N$ als Eckpunkte hat.



E= Menge der Eckpunkte, $\{Q_1,\dots,Q_N\}\in E$
K= Anzahl Kanten F= Anzahl Flächenstücke

$$E - K + F = 2$$

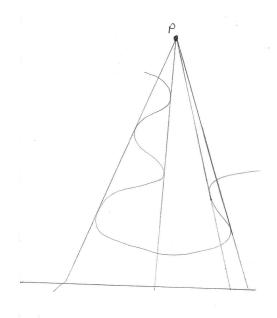
Nehme Urbilder der Dreiecke aus $F \longrightarrow$ Triangulierung von C, E', K', F'

$$\begin{split} E' &= dE - N \\ K' &= dK \\ \text{Also } X(C) &= E' - K' + F' = dE - N - dK - DF \\ &= d(E - K + F) - N = dX(P^1) - N = 2d - N \\ 2 - 2g(C) &= 2d - d(d - 1) = 3d - d^2 \\ 2g(C) &= d^2 - 3d + 2 = (d - 1)(d - 2) \end{split}$$

Bemerkung: 1) Im Beweis haben wir \mathbb{P} allgemein bez. C vorausgesetzt Beweis funktioniert auch wenn \mathbb{P} nicht allgemein bez. C ist, aber ist etwas komplizierter.

$$I(C, T_p; C_i p') = I(C, \nabla_p C; p') + 1$$

Finde noch immer $E' = dE - N$ weil $N = \sum_{p'} I(C, \nabla_p C; p')$



2) Diese topologische Invariante C bestimmt auch die Struktur von $\mathcal{C}^{\uparrow}(C)$ Es ist $\mathcal{C}^{\uparrow}(C) \approx \mathbb{C}^g/\Lambda$ $\mathbb{R}^{2g}/\mathbb{Z}^{2g} = (S^1)^{2g}$ $\Lambda \approx \mathbb{Z}^{2g}$

Wie viele Elemente der Ordnung N gibt es?

Antwort: N^{2g}

Alternative Definition von g über die Geometrie

 $0 \in C$ kubik : g Wendepunkt $\Leftrightarrow P \oplus P \oplus P = 0$ (Element der Ordnung 3)

$$g=3^2 \quad \rightarrow \quad g=1$$

$$Grad(C)=4\Rightarrow 64 \text{ Elemente der Ordnung 2 in } \mathcal{C}l(C)$$

Nachtrag zur Klassifikation von Kubiken

Gruppe PGL_2 operiert auf $\mathbb{P}^1 = C \cup \{\infty\}$ durch gebrochene lineare Transformationen $\phi: x \longmapsto \frac{\alpha x + \beta}{\gamma x + \delta} \quad \alpha \delta - \gamma \beta \neq 0$ Inhomogene Schreibweise $(x:y) \longmapsto (\alpha x + \beta y; \gamma x + \delta y)$ induziert von linearen Transformationen auf \mathbb{C}^2 Bemerke es gilt genau eine Transformation welche

$$0 \longmapsto 0 \quad \infty \longmapsto \infty$$
$$\Rightarrow \phi = Id$$

Definition

 $a, b, c, d \in \mathbb{P}^1$ vier verschiedene Punkte auf $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$ Das <u>Doppelverhältinis</u> von (a, b, c, d) ist $(a, b, c, d) = fracc - ab - c : \frac{d-a}{b-d} \in \mathbb{C}^* \setminus \{1\}$ <u>Proposition</u> $\exists ! \ \psi : \mathbb{P}^1 \to \mathbb{P}^1$ mit $\psi(a) = \infty, \psi(b) = 0, \psi(c) = 1$ Das Bild von d unter ψ ist dann $\psi(d) = (a, b; c, d)$

Beweis: Definiere $\psi: \mathbb{P}^1 \to \mathbb{P}^1$ durch " $\psi(x) = (a, b; c, x)$ " Wir setzen also : $\psi(x) = \frac{c-a}{b-c} \frac{b-x}{x-a} \in PGL_2$ $\psi(a) = \infty \quad \psi(b) = 0 \quad \psi(c) = 1 \quad \psi(d) = (a, b; c, d)$ (Sei ψ' eine weitere Abb. $\psi'(a) = \infty, \psi'(b) = 0, \psi'(c) = 1$, dann $\psi' \circ \psi: \mathbb{P}^1 \to \mathbb{P}^1$ mit $\infty \longmapsto \infty, 0 \longmapsto 0, 1 \longmapsto 1$ also $(\psi')^{-1} \circ \psi = Id$ und $\psi = \psi'$

Proposition: a, b, c, d; a', b', c', d' Quadrupeles von Punkte in \mathbb{P}^1 $\exists \psi : \mathbb{P}^1 \to \mathbb{P}^1 \psi(a) = a', \psi(b) = b' \psi(c) = c' \psi(d) = d' \Leftrightarrow (a, b; c, d) = (a', b'; c', d')$

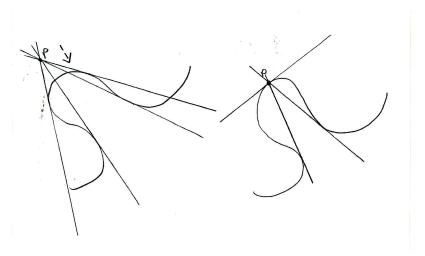
Beweis: $a,b,c,d\in\mathbb{P}^1\overset{\phi}{\Rightarrow}\mathbb{P}^1\ni a',b',c',d'$ mit $a,b,c,d\in\mathbb{P}^1\overset{\psi}{\Rightarrow}\mathbb{P}^1\overset{\psi'}{\Leftarrow}\mathbb{P}^1\ni a',b',c',d'$ mit $(\infty,0,1,\lambda)\in\psi$ und $\lambda=(a,b,c,d)$ und mit $(\infty,0,1,\lambda')\in\psi'$ und $\lambda'=(a',b',c',d')$

Bemerke: Ist $(a, b, c, d) = \lambda$, so ist $(b, a, c, d) = \frac{1}{\lambda}$ und $(c, b, a, d) = 1 - \lambda$ $\lambda \longmapsto \frac{1}{\lambda}, \lambda \longmapsto 1 - \lambda$ erzeugen eine Gruppe σ_3 mit 6 Elementen $1 - \frac{1}{\lambda}, \frac{1}{1-\lambda}, \frac{\lambda}{1-\lambda}$

$$\begin{array}{ll} j(\lambda) = 256 \frac{(j^2 - \lambda + 1)^3}{\lambda^2 (1 - \lambda)^2} & j(\lambda) = j(\frac{1}{\lambda}) = j(1 - \lambda) \\ j(\lambda) = \text{konstante} \to 6 \text{ L\"osungen f\"ur } \lambda \end{array}$$

Satz: $\exists \psi : \mathbb{P}^1 \longmapsto \mathbb{P}^1 \text{ mit } \psi(\{a, b, c, d\}) = \{a', b', c', d'\} \Leftrightarrow j(a, b, c, d) = j(a', b', c', d')$

Kehren wir nun zu unserem vorherigen Thema zurück



 $P\longmapsto p^{'}\in C$

zwei der Tangenten an C durch P werden zur Tangente $T_{p'}C$ $p \in C$ Kubik \rightarrow es gibt 4 Geraden l_1, l_2, l_3, l_4 durch P mit $l_i \neq T_p l$ welche Tangente von C sind. $l_i = T_{p_i}C$ mit 4 Punkten in $T_p\mathbb{P}^2$

Satz von Ponce:

j-Invariante von l_1, l_2, l_3, l_4 ist unabhängig von $p \in C$ DIes ist per Definition j-Invariante von C